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Sound propagation in conical waveguides is analyzed for the case where a background
#ow is maintained through the cone and points along the radial co-ordinate r only.
A general expression for the acoustic pressure is derived and the perturbations of the
acoustic "eld accommodated by the presence of a background #ow are found by use of the
Green function method. In the second part of this paper, #ow measurement properties are
discussed. The designation of propagation constants such as the wave number and phase
speed lose much of their intuitive meaning in a conical waveguide. Instead, the so-called
pseudo-guide wave number and pseudo-phase speed are introduced as they are well de"ned
in the cone case and simpli"es to the wave number and phase speed in the cylinder case
respectively. It is shown that changes due to a background #ow in pseudo-guide wave
number, pseudo-phase speed, and zero-point crossing times all exhibit an oscillatory
behavior as a function of the r co-ordinate. This is in contrast to the case of a cylinder where
such changes become a linear function of the distance from the transmitter. The oscillatory
behavior in the changes in zero-point crossing times as a function of r does not hamper #ow
measurement in the cone case since the only requirement to be ful"lled is, in principle, that
a one-to-one correspondence between measured output (changes in zero-point crossing
times) and actual #ow (determined by vJ

0
) at a speci"c receiver location exists. It is shown

that this requirement is ful"lled as changes in zero-point crossing times depend linearly on
the #ow coe$cient vJ

0
at a given r co-ordinate. There are, however, certain discrete

r co-ordinate values where this is not the case, namely those where changes in zero-point
crossing times become zero for any value of v8

0
. In other words, if the receiver is positioned

near r co-ordinates where zero-point crossing times are at a maximum or a minimum for
a given value of vJ

0
, the truncated cone #ow meter sensor is able to measure #ow

unambiguiosly by detection of changes in zero-point crossing times induced by
a background #ow.

( 2001 Academic Press
1. INTRODUCTION

Sound propagation in conical horns or waveguides containing a moving #uid is of great
interest in connection with ultrasonic #ow measurement. Most liquid #ow meter designs
consist of several inter-connected tubes being either cylindrical or conical in shape. Theory
for sound propagation in a moving #uid con"ned by cylindrical walls has been examined to
some extent [1}10]. Similarly, several papers exist on sound propagation in a moving #uid
for the case of a duct of varying cross-section [11}21]. Particular attention is paid to conical
ducts in the interesting works by Easwaran and Munjal [15], Davies and Doak [17, 18],
and Lung and Doige [19] for the case where a mean #ow is present in the medium, and
Munjal [20] and Benade [21] for the case of a stationary medium. However, a full
analytical three-dimensional treatment of sound propagation in conical ducts carrying
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Figure 1. Figure of a cone and associated spherical co-ordinates used in the present work.
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a moving medium does not exist as of today to the present author's knowledge. There is
considerable and excellent work on electromagnetic "eld theory of conical horns [22}24]
which can be easily transformed to the problem of sound propagation in a quiet medium
con"ned by conical walls.

In the "rst part of the present work, the azimuthal symmetric three-dimensional problem
(involving two space co-ordinates) of sound propagation in a conical duct con"ning
a moving medium is described. Two coupled partial di!erential equations are derived for
the case where #ow points along the radial co-ordinate r (using spherical co-ordinates to
represent the cone, refer to Figure 1). An analytical treatment is carried out using the Green
function method for the analysis of the perturbation of the acoustic pressure due to the
presence of a background #ow if the medium #ow is su$ciently small.

The remaining part of this work is concerned with ultrasonic liquid #ow measurement in
conical #ow meter sensors. The designation of propagation constants such as wave number
and phase speed lose much of their intuitive meaning in a conical waveguide. Instead, the
so-called pseudo-guide wave number and pseudo-phase speed are introduced as they are
well de"ned in the cone case. It is of particular relevance to consider changes in zero-point
time crossings at a given r location accommodated by the presence of a background #ow as
such changes usually represent the measured output from the #ow meter electronics. The
measured change in zero-point crossing times with #ow is then correlated to the mean #ow
in a one-to-one correspondence. It is found that changes in pseudo-guide wave number and
pseudo-guide phase speed as well as changes in zero-point crossing times vary in an
oscillatory manner as a function of the radial co-ordinate r but this does not necessarily
hamper the possibility of measuring actual #ow by detecting changes in zero-point crossing
times. In principle, the only requirement to be ful"lled is that a one-to-one correspondence
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between measured changes in zero-point crossing times and actual #ow is guaranteed. It
will be shown that this requirement is ful"lled if the receiver is located near one of the
r co-ordinate values where changes in zero-point crossing times are at a minimum or
a maximum.

2. THEORY

Consider a truncated conical waveguide of radii a and b (a(b) and opening angle h
0

(refer to Figure 1). Assume that a liquid #ow v
0

is maintained through the cone where
v
0
points in the r direction and v

0
is a function of the r co-ordinate only, i.e., v

0
(r)"(v

0r
, v

0h ,
v
0(

)"(v
0
(r), 0, 0). Spherical co-ordinates are chosen to represent the cone in the sense that

the product of intervals [22}24]:

I
r
]Ih]I

(
"[a; b]][0; h

0
]][0; 2n], (1)

spans the whole truncated cone.
Assume next that the #ow v

0
(r) is incompressible, i.e.,

$ ) v
0
"

1

r2

L
Lr

(r2v
0
(r))"0 (2)

and so

v
0
(r)"

vJ
0

r2
, (3)

where vJ
0

is a constant.
In this paper, a thorough analysis of the in#uence of a background #ow v

0
(r), as given by

equation (3), on sound propagation properties will be discussed for the truncated cone case.
The "rst task to accomplish is the derivation of a partial di!erential equation in the acoustic
pressure including perturbative e!ects due to the presence of a small liquid background #ow
v
0
(r). This will be carried out in the following section.

2.1. DERIVATION OF A DIFFERENTIAL EQUATION DESCRIBING SOUND PROPAGATION

IN A MOVING FLUID CONFINED BY CONICAL WALLS

In this section, a single equation describing sound propagation in a moving #uid con"ned
by conical walls will be derived (equation (13)). This partial di!erential equation is
subsequently separated in variables r and h to obtain two (weakly) coupled ordinary
di!erential equations. The coupling is weak since the h equation is independent of the radial
equation, however, the eigenvalues found by solving the h equation must be used in solving
the radial equation.

From the equation of continuity and the Euler equation,

Lo
Lt

#$ ) (ov)"0,
Lv

Lt
#(v )$)v"!

$p

o
, (4, 5)
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the following equations, exact to "rst order in the small quantity v
0
, can be derived upon

assuming monofrequency operation (replacing all time derivatives L/Lt by !iu):

!iup@#o
0
c2$ ) v#(v

0
)$ )p@"0, (6)

!iuv#(v )$)v
0
#(v

0
)$)v"!

1

o
0

$p@, (7)

where

v"v
0
(r)#v (r), p"p

0
#p@(r), o"o

0
#o@ (r). (8}10)

In equations (8)} (10), v
0
(r), p

0
, and o

0
represent the medium #ow, pressure, and mass

density in the absence of pressure waves respectively. The parameters v(r), p@(r), and o@(r) are
all assumed small (linear acoustics) and represent the velocity, pressure, and mass density
variations, respectively, accommodated by the presence of pressure waves in the #owing
medium. In deriving equations (6, 7) use has also been made of the isentropic condition

p@(r)"c2o@(r), (11)

where c is the sound speed at constant entropy in the quite medium. Finally, only linear
terms in the primed quantities are kept in deriving equations (6, 7) since higher-order terms
are negligibly small (again assuming operation in the linear acoustic regime).

Taking the divergence of equation (7) yields

!iu$ ) v#$ ) [(v )$)v
0
#(v

0
)$) v]"!

1

o
0

$2p@. (12)

Employing equation (6) for $ ) v and approximating v by (1/io
0
u)$p@ in terms of

equation (12) were v
0

appears leads to a single ordinary di!erential equation in the acoustic
pressure p@:

$2p@#
u2

c2
p@#

iu
c2

(v
0
)$)p@#

1

iu
$ ) [($p@ )$)v

0
#(v

0
)$)$p@]"0. (13)

Note that equation (13) is exact to "rst order in v
0
. In the case of ultrasonic liquid #ow meter

applications, considered in the following, the #ow velocity range is in the order of
0)1}1)0 m/s and the liquid sound speed is above 1000m/s implying: Dv

0
D/c@1. In addition,

ultrasonic frequencies are assumed to be higher than 1 MHz so that au/cA1, where a is the
smallest truncated cone radius (refer to Figure 1). These conditions guarantee that the
second and third terms on the left-hand side of equation (7) are considerably smaller as
compared to the "rst term on the left-hand side of equation (7). This justi"es neglecting
second order terms in v

0
in equation (13).

By separating the acoustic pressure p@ in functions depending on r and h only (considering
azimuthal symmetrical pressure wave excitations in the following):

p@(r, h)"f (r)g(h), (14)

so that equation (13) becomes

g(h)H
1
(r)#H

2
(r)

1

sin h
L
Lh Asin h

Lg

LhB"0, (15)
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where

H
1
(r)"

1

r2
L
Lr Ar2

Lf

LrB#
u2

c2
f (r)#

iu
c2

v
0
(r)

Lf

Lr

#

1

iu
1

r2

L
Lr Ar2

Lf

Lr

Lv
0

Lr B#
1

iu
1

r2

L
Lr Ar2v0(r)

L2f

Lr2B, (16)

H
2
(r)"

1

iu
v
0
(r)

r2
Lf

Lr
!

1

iu
v
0
(r)

r3
f (r)#

f

r2
. (17)

Note that azimuthal symmetry implies that p@ cannot be a function of the azimuthal
co-ordinate /. It follows from equation (15) that

g(h)

(1/sin h) L/Lh (sin hLg/Lh)
"!

H
2
(r)

H
1
(r)

"!

1

i
, (18)

where i is a constant independent of r and h. The possible values of i are obtained by
solving

1

sin h
L
Lh Asin h

Lg

LhB#ig (h)"0, (19)

subject to the boundary conditions: (1) g(0) must be "nite; (2) Lg/LhDh"h
0
"0

(corresponding to rigid conical walls). The latter condition can be proved as follows. Note
that the assumption of rigid conical walls implies

v@h D h"h
0
"0. (20)

Employing one of equations (7), one has

!iuv@h#v
0
(r)

Lv@h
Lr

"!

1

o
0

1

r

Lp@
Lh

, (21)

and writing v@h on separable form one has

v@h"h(r)l(h), (22)

which leads to

no
0
l(h)#

Lg

Lh
"0, (23)

for some constant n. The expression in equation (20) implies l (h
0
)"0, and the sought result

follows:

Lg

Lh Kh"h
0

"0. (24)
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2.2. SOLVING FOR POSSIBLE i VALUES

Firstly, note that equation (19) for g(h) is independent of vJ
0

(or independent of v
0
(r)).

Therefore, the presence of a background #ow v
0
(r) leaves the h dependence of the acoustic

pressure p@(r, h) unchanged, however, the r-dependent part f (r) will be modi"ed.
Consider the possible i values. Equation (19) is customarily expressed in terms of the

variable x"cos h,

L
Lx C(1!x2)

Lgl
Lx D#l(l#1)gl(x)"0, (25)

where the i parameter has been replaced by l(l#1) for reasons that will soon become clear.
Similarly, g has been replaced by gl to indicate that the function g depends on the parameter
l. Equation (25) must be solved subject to the boundary conditions:

(1) gl Dx/1
must be "nite; (2) Lgl/Lx D

x/#04 h0"0 (corresponding to rigid conical walls).

These boundary conditions are equivalent to those stated earlier. The solution to the
di!erential equation given by equation (25), known as the Legendre equation, is the
so-called Legendre functions [25]:

gl(x)"
2
F
1A!l; l#1; 1,

1!x

2 B (26)

or

gl (cos h)"
2
F
1A!l; l#1; 1,

1!cos h
2 B, (27)

where
2
F
1

is the hypergeometric function

2
F
1
(a; b; c; z)"1#

ab

c

z

1!
#

a(a#1)b(b#1)

c(c#1)

z2

2!
#2 . (28)

The Legendre function de"ned by equation (26) ful"lls

gl(1)"1, (29)

ensuring the "niteness of gl at x"1 as required by the boundary conditions. The possible
values for l are found by solving:

Lgl(x)

Lx Kx"cos h
0

"0. (30)

numerically by using equations (26)} (28).
In Table 1, the "rst "ve l values are given for the set of opening angles: h

0
"5, 10, 15, 20,

25, and 303 (where 3603"2n rad).



TABLE 1

Calculated l values for a cone with opening angles: h
0
"5, 10, 15, 20, 25, and 303. ¹he lowest

,ve values for l are given for each opening angle h
0
.

h
0
/mode index 1 2 3 4 5

5 0 43)4 79)9 116)1 152)2
10 0 21)5 39)7 57)8 75)8
15 0 14)1 26)3 38)4 50)4
20 0 10)5 19)6 28)6 37)7
25 0 8)3 15)6 22)8 30)0
30 0 6)8 12)9 18)9 25)0
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2.3. DETERMINATION OF THE RADIAL FUNCTION f CORRESPONDING TO A VANISHING

BACKGROUND FLOW

It is instructive "rst to determine the possible solutions f (0)l corresponding to a vanishing
background #ow: vJ

0
"0. Observe that the second expression in equation (18),

H
1
(r)!l(l#1)H

2
(r)"0, (31)

reduces to

L
Lr Ar2

Lf (0)l
Lr B!Al(l#1)!

u2

c2
r2B f (0)l (r)"0 (32)

for the case where v8
0
"0. The general solution to equation (32) is

f (0)l (r)"Ah(1)l A
u
c

rB#Bh(2)l A
u
c

rB, (33)

were h(1)l and h(2)l are the spherical Hankel functions:

h(1)l (r)"jl(r)#igl(r), h(2)l (r)"jl(r)!igl(r), (34, 35)

de"ned in terms of the spherical Bessel and Neumann functions jl and gl . The spherical
Hankel function choice of representing solutions to equation (32) is convenient for radiation
problems because for large values of the argument z, they behave as [26]

h (1)l (z)"(!i)l`1
exp (iz)

z
, h(2)l (z)"il`1

exp(!iz)

z
, (36, 37)

corresponding to out-going and in-going waves respectively.
In conclusion, the complete solution for the acoustic pressure in the case of a vanishing

background #ow becomes

pAr, h;
u
cB"+

l CA7
h(1)l A

u
c

rB#Blh(2)l A
u
c

rBD 2
F
1A!l; l#1; 1,

1!cos h
2 B , (38)
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where Al and Bl are constant coe$cients to be determined by the boundary conditions at
the cross-sections r"a and b of the truncated cone. In equation (38), p (r, h; u/c) denotes the
acoustic pressure corresponding to monofrequency conditions with angular frequency u.

2.4. THE INFLUENCE OF A BACKGROUND FLOW v
0
(r) ON THE RADIAL FUNCTION fl (r)

Consider next the case where a background #ow is maintained through the cone: vJ
0
O0.

Let us rewrite the general equation for the radial function ( fl) as given by the second
equality in equation (18):

H
1
(r)!l(l#1)H

2
(r)"0. (39)

Assume that the condition

(u/c) aA1, (40)

is ful"lled being a good assumption in ultrasonic #ow meter applications [refer also to the
discussion following equation (13)]. The condition given by equation (40) ensures that the
relations in equations (36, 37) can be used in the interval a(r(b. In addition, the
assumption: (u/c)aA1 makes it possible to approximate for derivatives in the spherical
Hankel functions as follows:

Lh(1)l ((u/c)r)

Lr
"i

u
c

h(1)l A
u
c

rB, (41)

Lh(2)l ((u/c)r)

Lr
"!i

u
c

h(2)l A
u
c

rB . (42)

In the following, consider the perturbation of out-going acoustic pressure waves (e.g.,
ultrasonic waves) by the presence of a background #ow. In this case,

f (0)l (r)"h(1)l A
u
c

rB,
L f (0)l (r)

Lr
"i

u
c

f (0)l (r), a)r)b. (43, 44)

Next, assume that the changes in fl accommodated by the presence of a non-vanishing
background #ow are small such that fl can be replaced by f (0)l in all terms involving v

0
(r) or

derivatives of v
0
(r). With these assumptions, equation (39) simpli"es to

L
Lr Ar2

Lfl
LrB!Al(l#1)!

u2

c2
r2B fl(r)"

2u2vJ
0

c3
f (0)l (r). (45)

This equation can be solved using the Green function method (refer to the following
section).

2.5. SOLVING FOR THE ACOUSTIC PRESSURE p(r, h; u/c) IN THE CASE WHERE

A NON-VANISHING BACKGROUND FLOW v
0
(r) IS MAINTAINED THROUGH THE CONE

Let us determine a partial solution to the inhomogeneous equation given by
equation (45). This is conveniently done by use of the Green function method.
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A Green function for the di!erential equation given by equation (45) satis"es

L
Lr Ar2

LGl(r, r @ )
Lr B!Al(l#1)!

u2

c2
r2BGl(r, r@)"d(r!r@ ). (46)

Solutions are known to this equation for rOr@, since in that case, Gl(r, r@) satis"es the
homogeneous equation (32). In other words, Gl(r, r@) must be a linear combination of h(1)l
((u/c)r) and h(2)l ((u/c)r) whenever rOr@ : i.e.,

Gl(r, r@ )"A~l
exp (i (u/c)r)

i(u/c)r
#B~l

exp (!i (u/c)r)

i (u/c)r
; a)r)r@)b, (47)

Gl(r, r@ )"A`l
exp (i (u/c)r)

i(u/c)r
#B`l

exp (!i (u/c)r)

i (u/c)r
; a)r@)r)b. (48)

Two of the coe$cients A~l , B~l , A`l , and B`l are determined by the conditions that
(1) Gl(r, r@) must be continuous at r"r@,

Gl(r, r@ ) Dr/r{~
"Gl (r, r@) Dr/r{`

, (49)

and (2) integration of equation (45) from r"r@!e to r"r@#e, where e is a small positive
number, gives the second condition:

r@2C
LGl(r, r@)

Lr K
r/r{`

!

LGl (r, r@)
Lr K

r/r{~
D"1. (50)

The speci"cation of boundary conditions is unnecessary at this point, since the aim is to "nd
a particular solution. Accordingly, the coe$cients A~l and B`l may be chosen to equal zero:

A~l "0, B`l "0, (51, 52)

upon keeping in mind that the addition of the full solution to the homogeneous di!erential
equation (equation (32)) to any particular solution constitutes the complete solution to the
inhomogeneous di!erential equation (equation (45)).

The combination of equations (47)} (52) leads to the following result for the Green
function:

Gl(r, r@)"
1

2iu/c

exp (!i (u/c)r)

r

exp (i(u/c)r@)
r@

, a)r)r@)b, (53)

Gl(r, r@)"
1

2iu/c

exp (i (u/c)r)

r

exp (!i(u/c)r@)
r@

, a)r@)r)b (54)

and a particular solution y
p
(r) to equation (45) becomes

y
p
(r)"P

b

a

Gl(r, r@) A
2u2vJ

0
c3

f (0)l (r@)Bdr @

"!(!i)l`1
2u2vJ

0
c3

exp (!i(u/c)r)

(u/c)r Cln A2i
u
c

rB#
=
+
n/1

(2i(u/c)r)n

n ) n! D
#C1(a)h(1)l A

u
c

rB#C2(b)h(2)l A
u
c

rB, (55)
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where C1(a) and C2(b) are constants determined uniquely by the radii a and b respectively.
Recapitulating: in the absence of a background #ow: vJ

0
"0, the solution describing

propagation of outgoing waves is f (0)l (r)"h(1)l ((u/c)r). In the presence of a background
#ow, this function must be replaced by fl(r) de"ned by

fl(r)"h(1)l A
u
c

rB!(!i)l`1
2u2vJ

0
c3

exp (!i (u/c)r)

(u/c)r Cln A2i
u
c

rB#
=
+
n/1

(2i(u/c)r)n

n ) n! D
#vJ

0CCh(1)l A
u
c

rB#C
2
h(2)l A

u
c

rBD, (56)

where C
1

and C
2

are constants determined by the boundary conditions imposed. Note that
fl (r) simpli"es to h(1)l ((u/c)r) when vJ

0
"0 as it should.

In the next section, this solution for fl will be used to examine the in#uence of
a background #ow on acoustic properties of truncated cones.

2.6. DEFINITION OF PSEUDO-GUIDE WAVE NUMBER AND PSEUDO-PHASE SPEED

By analogy with the cylindrical case, one can de"ne the so-called pseudo-guide wave
number:

kl(r)"ImA
Lfl/Lr

fl B, (57)

where Im()) denotes the imaginary part of the argument. Observe that kl(r) becomes
k"u/c for the plane wave: exp (ikr!iut), i.e., the pseudo-guide wave number equals the
wave vector in the case of propagating waves in a cylinder (if, for the cylinder, the
co-ordinate r corresponds to the axial co-ordinate). The designation of propagation
constants (such as the wave number k) for the conical wave guide does not follow in the
usual sense. In a conical wave guide, the acoustic "elds are not periodic functions of the
propagation co-ordinate r, and propagation constants lose much of their intuitive meaning.
However, the pseudo-guide wave number is well de"ned in the conical wave guide for any
r position and represents the relative change in the acoustic pressure as a function of r.
Obviously, the pseudo-guide wave number generally depends on the position co-ordinate
r where it is evaluated.

The pseudo-guide wave number becomes, to "rst order in the small quantity vJ
0
,

kl(r)"ImA
Lf (0)l /Lr

f (0)l B#ImA
Lf (1)l /Lr

f (0)l B!ImA
Lf (0)l
Lr

f (1)l
( f (0)l )2B

"

u
c
#Im A

Lf (1)l /Lr

f (0)l B!ImA
Lf (0)l
Lr

f (1)l
( f (0)l )2B, (58)

where

f (1)l (r)"fl(r)!f (0)l (r)"!(!i)l`1
2u2vJ

0
c3

exp (!i(u/c)r)

(u/c)r ClnA2i
u
c

rB#
=
+
n/1

(2i (u/c)r)n

n ) n! D
#vJ

0CC1
h(1)l A

u
c

rB#C
2
h(2)l A

u
c

rBD, (59)
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Lf (1)l
Lr

"!(!i)l`1
2u2vJ

0
c3 C!i

exp (!i(u/c)r)

r AlnA2i
u
c

rB#
=
+
n/1

(2i (u/c)r)n

n ) n! B#
exp (i(u/c)r)

(u/c)r2 D
#vJ

0Ci
u
c

C
1
h(1)l A

u
c

rB!i
u
c

C
2
h(2)l A

u
c

rBD . (60)

A pseudo-phase speed is conveniently de"ned as

v
pl(r)"u/kl(r) . (61)

Note that this de"nition ensures that the relation between pseudo-guide wave number and
pseudo-phase speed is the same as the corresponding relation between wave number and
phase speed.

3. NUMERICAL RESULTS AND DISCUSSIONS

In the previous section, a general solution involving two space co-ordinates r and h for
the acoustic pressure in a truncated cone was derived for the case where #ow is directed
parallel to the r direction (equation (56)). Earlier papers on the same topic [15}21] involve
one space co-ordinate only (r), and, therefore, fail to describe the complete picture of
ultrasound propagation in truncated cones con"ning a #owing media. It is, however,
possible to compare results of the present work with, e.g., reference [17], if we restrict our
analysis to the "rst mode for which l"0 (fundamental mode) allowed to propagate at any
frequency. In actual fact, equation (6) in reference [17],

d2f

dr2
#2 C

1

r
!ik1 M

rD
d f

dr
#k1 2f"0, (62)

becomes equation (45) of the present work by realizing that (to "rst order in v
0
),

!2ik1 M
r

d f

dr
+!2ik1 M

r

d f (0)

dr
"2k1 2M

r
f (0)"2

u2v
0
(r)

c3
f (0) (r), (63)

where f (0) is the zeroth order approximation to f in the presence of a background #ow v
0
.

The last equality in equation (63) follows as M
r
in reference [17] equals v

0
(r)/c in the present

work, and k1 "u/c. The analytical results obtained here, therefore, agree with those of
reference [17]. Note that the results displayed in Figures 2}5 which follow are solely based
on equations (57)}(61) which again are analytically derivable from equation (45) as can be
proved by direct insertion.

In order to assess the possibilities for measuring #ow in conical waveguides by using
ultrasonic time-of-#ight measurements, properties such as the pseudo-guide wave number,
pseudo-phase speed, phase changes and associated changes in zero-point crossing times at
a given r co-ordinate induced by the presence of a background #ow will be examined.
However, before addressing such properties, some introductory remarks must be made.

In applications where the transducer excites a given pressure burst or continuous wave
signal at a speci"ed location, i.e., at a speci"ed r co-ordinate (de"ned to be r"a in the
following), it is of interest to determine the acoustic pressure at a di!erent r co-ordinate, say
r@, where r@@b. In particular, let us compare the two cases where (a) a pressure signal is



Figure 2. The upper [lower] "gure shows the pseudo-guide wave number kl(r) [pseudo-phase speed v
pl(r)] as

a function of the radial position co-ordinate r. Parameter values used in the calculations are: f"u/2n"100 kHz,
a"0)05 m, c"1500 m/s, and v8

0
"1]10~5 m3/s equivalent to a #ow: v

0
(r)"0)10m/s at r"a.

Figure 3. Changes in zero-point crossing times Dt as a function of the radial position co-ordinate r. Parameter
values are the same as for Figure 2.
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generated by the transmitter at r"a and the acoustic pressure at the receiver position r"r@
is measured corresponding to zero-#ow conditions: vJ

0
"0, and (b) the same pressure signal

is generated by the transmitter at r"a and the acoustic pressure at the receiver location r@ is
measured corresponding to the case where a background #ow: v

0
(r)"vJ

0
/r2O0 is



Figure 4. Changes in zero-point crossing times at a given r position co-ordinate (r"0)08 m) as a function of the
#ow coe$cient v8

0
. Parameter values used in the calculations are: f"u/2n"100 kHz, a"0)05 m, c"1500 m/s.

Figure 5. Relative change in acoustic pressure Dfl (r) (de"ned by equation (66)) plotted as a function of the radial
co-ordinate r using the same parameter values as in Figure 2.
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maintained through the cone. In both cases (a) and (b), the pseudo-guide wave guide wave
number and pseudo-phase speed are calculated at r"r@. The di!erence in these parameters
accommodated by the presence of the background #ow allows us to examine #ow
measurement properties of #ow meter sensor designs consisting of one or several pieces of
truncated cones. In the case where several pieces of truncated cones are connected, the
cross-sectional area will still be assumed to vary in a continuous manner as a function of
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distance along the duct centerline. In order to assess sound propagation characteristics of
such sensor duct geometries (one or several pieces of truncated cone(s)), it is necessary to
understand sound propagation in a single truncated cone in the "rst place. This will be
discussed next.

Consider a single truncated cone with radii a and b (a(b) as discussed in the previous
section. Let us analyze the particular solution to equation (56) corresponding to the
parameter choices C

2
"0 and fl(r"a)"f (0)l (r"a). The choice C

2
"0 implies that

in-going acoustic waves (propagating from b to a) are not excited by the presence of the
background #ow. Such (in-going) waves are certainly not excited in the absence of
a medium #ow as medium mass density and medium sound speed in that case are
homogeneous parameters and transducer excitation takes place at r"a. In this case,
acoustic waves must propagate from r"a to b. The requirement, fl(r"a)"f (0)l (r"a),
simply states that the acoustic pressure generated by the transmitter is independent of the
background #ow (reasonable since the vibration pattern of the transducer aperture is left
una!ected by the presence of a small background #ow).

In Figure 2, changes in the pseudo-guide wave number kl(r) and the associated
pseudo-phase speed v

pl(r) are shown as a function of the r co-ordinate. It follows from the
de"nition of kl(r) and v

pl(r) that both must be independent of the l value ( fl and Lfl/Lr are
proportional to (!1)l`1). It is evident that the changes in pseudo-guide wave number and
pseudo-phase speed accommodated by the presence of the background #ow oscillates
around 0 with amplitudes of approximately 6)5 m~1 and 23m/s respectively, as the radial
position co-ordinate r increases from a"0)05 m to r"0)08m (keep in mind that the
transmitter is located at r"a). In the calculations, the ultrasound frequency is assumed to
be f"u/2n"100 kHz and the sound speed in the quite medium is c"1500 m/s
corresponding to sound propagation in water at 253C. With these parameter values, the
ratio (u/c)a+21A1 as required for the theory in the previous section to apply. Note that
the frequency of the oscillations shown in Figure 2 is approximately !2 f, i.e., twice the
ultrasonic frequency f in absolute terms. This comes about as the term in f (1)l (r) proportional
to

exp (!i (u/c)r)

(u/c)r ClnA2i
u
c

rB#
=
+
n/1

(2i (u/c)r)n

n ) n ! D
oscillates with a frequency equal to approximately !f while f (0)l (r) oscillates with
a frequency #f. The double frequency oscillation in kl(r) found at small vJ

0
values now

follows from the de"nition of kl as the ratio between Lfl (r)/Lr and fl (r). This result is very
di!erent from the analog case of propagation of out-going waves in a cylinder carrying
a moving #uid. In the cylinder case, the pseudo-guide wave number (being equal to the
usual wave number) is a linear function of the axial distance [2}4]. It may seem at "rst sight
that #ow measurement in a truncated cone is hampered due to the oscillatory behavior of
the pseudo-guide wave number and the pseudo-phase speed as a function of r. This is not
necessarily the case as we will now address.

In Figure 3, the change in zero-point time crossings Dt for the "rst acoustic pressure mode
fl (r, t) (l"0) accommodated by the presence of a background #ow is shown as a function of
the r co-ordinate. Zero-point time crossings t

n
are determined by imposing the condition.

Re( fl (r, tn))"Re( fl (r) exp (!iut
n
))"0, (64)

where n is a zero-point crossing index number, and Re()) denotes the real part of the
argument. Equation (64) follows as the physical signal is the real part of fl (r, t). The change
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in zero-point time crossings due to the presence of a background #ow v
0
(r) becomes

Dt"t
n
!t

n0
, (65)

where t
n

and t
n0

denote the nth zero-point crossing times in the presence and absence of
a background #ow v

0
(r) respectively.

It can be argued that changes in zero-point crossing times i.e., Dt as de"ned by equation
(65) are more relevant in connection with practical ultrasonic #ow measurement discussions
than, e.g., pseudo-phase speed changes (being shown in Figure 2). The reason is that
typically, in practice, variations in zero-point crossing times with #ow at a certain speci"ed
receiver position co-ordinate are detected by the #ow-meter electronics. The measured
change in zero-point crossings with #ow is then correlated to the mean #ow in a one-to-one
correspondence.

Nevertheless, Figures 2 and 3 reveal that kl(r), v
pl (r) as well as Dt all are oscillating

functions of the receiver position. As a result, it is bene"cial (if not essential) to locate the
receiver close to a position co-ordinate r where the absolute value of Dt is at a maximum to
achieve the highest possible sensitivity for measuring #ow. In other words, if the receiver is
located at a r co-ordinate where Dt"0 even when #ow is maintained through the cone,
#ow measurement based on changes in zero-point time crossings is completely obstructed.

It is important to realize that ultrasonic #ow measurement based on Dt variations with
#ow is possible if there is a one-to-one correspondence between vJ

0
and Dt. This is indeed the

case if the receiver is located near one of the minima or maxima for Dt (refer to Figure 3). In
Figure 4, Dt as a function of the #ow coe$cient vJ

0
is depicted for an r co-ordinate

corresponding to a minimum in Dt (r"0)08 m). Evidently, Dt is a linear function of vJ
0
, and

so Dt measurements can be used to determine #ow unambiguously. In other words, Figure
4 serves as a calibration curve between measured Dt values and vJ

0
.

In Figure 5, the relative change in the acoustic pressure Dfl(r) accommodated by the
presence of a background #ow is shown as a function of the r position co-ordinate for
a "xed value of the #ow coe$cient v8

0
. The relative change in the acoustic pressure is de"ned

by

Dfl (r)"
f (1)l (r)

f (0)l (r"a)
. (66)

4. CONCLUSIONS

Sound propagation in conical waveguides is analyzed for the case where a background
#ow is maintained through the cone. The #ow velocity v

0
"(v

0r
, v

0h , v0()"(v
0r

, 0, 0) points
in the r direction everywhere and v

0
(r) decreases as r~2 so as to ful"ll the equation of

continuity. In the "rst part of the paper, the general theory for sound propagation in
a moving #uid con"ned by conical walls is described and a general expression for the
perturbations of the acoustic pressure due to the presence of a background #ow is derived
by use of the Green function method. In a conical waveguide, however, acoustic properties
such as the wave number and phase speed lose much of their intuitive meaning. Instead, the
so-called pseudo-guide wave number and pseudo-phase speed are often employed as they
are well de"ned in the cone waveguide geometry. In addition, the pseudo-guide wave
number and pseudo-guide phase speed simplify to the usual wave number and phase speed
in the case of a cylinder, where acoustic waves become travelling waves: exp (ikr!iut).

In the second part of this work, #ow measurement properties of a conical waveguide are
discussed. This problem is of practical interest as ultrasonic #ow meters often consist of
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several inter-connected truncated conical waveguides. The cone geometry design is often
taken so as to (a) tailor the #ow pro"le, and (b) allow for physical space inside the #ow meter
sensor to the transmitting and receiving transducers. It is shown that changes in the
pseudo-guide wave number and pseudo-phase speed as well as the better representative for
ultrasonic #ow measurement: changes in zero-point crossing times accommodated by the
presence of a background #ow all exhibit an oscillatory behavior as a function of the
r co-ordinate. This is in contrast to the cylinder case where such properties depend linearly
on distance from the transmitter. Fortunately, #ow measurement by detection of, e.g.,
changes in zero-point crossing times is still possible if the receiver is located near the
r co-ordinates where such changes are at a maximum or a minimum. It is necessary that the
receiver is not positioned near r co-ordinates where #ow-induced changes in zero-point
crossing times vanish. In principle, #ow measurement requires no more than a one-to-one
correspondence between the measured output and the actual #ow. It is shown that this
requirement is ful"lled since a linear relationship between measured output (changes in
zero-point crossing times) and the actual #ow (determined uniquely by vJ

0
) exists.
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